COMPARISON CHART FOR BIODEGRADABLE MATERIALS

<table>
<thead>
<tr>
<th>Criteria</th>
<th>PLA based film</th>
<th>SUPEREKO film</th>
<th>REMARKS AND REFERENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of product</td>
<td>Corn starch based material</td>
<td>BOPP (polypropylene) film based</td>
<td></td>
</tr>
<tr>
<td>Source of material</td>
<td>Renewable vegetal material</td>
<td>Fossil based</td>
<td></td>
</tr>
<tr>
<td>Type of biodegradability</td>
<td>Hydro biodegradable</td>
<td>Oxo-biodegradable</td>
<td></td>
</tr>
<tr>
<td>Form of biodegradability</td>
<td>Intrinsic biodegradability</td>
<td>Acquired biodegradability</td>
<td></td>
</tr>
<tr>
<td>Technology</td>
<td>Cargill, Mitsui, Hycaill, Galactic</td>
<td>Totally Degradable Plastics Additive®</td>
<td>Oxo-biodegradability technology: already used in PE for biodegradable plastic bags for customers like TESCO</td>
</tr>
</tbody>
</table>

ECO ASSESMENT

- **Base material**: Corn (with question mark on non transgenic origin of corn culture)
 - **SUPEREKO**: Oil

- **Energy consumption to produce**
 - Important energy consumption for PLA:
 - require oil for PLA resin production (polymerization);
 - require oil for Film production (extrusion, biorientation, heating)
 - Thermal valuation during PP production

- **Energetic valuation of waste**
 - None
 - 88% of incinerated tonnage is subject to thermal and electric valuation

- **Requested land surface to produce**
 - 30.7 H per 100 tons of PLA
 - None
 - PLA is requiring very large non food culture expansion

- **Yield**
 - 2.5 kg of corn per kg of PLA
 - Yield very close to 100%

- **Water consumption**
 - 4.45 m³ of water per ton of PLA
 - Negligable
 - PLA: very high water consumption, where some area are with water shortage

- **Pesticides consumption**
 - Assuming corn is non transgenic:
 - 89 kg herbicides/100tons of PLA
 - 2.3 kg pesticides/100 tons of PLA
 - None
 - Source: http://www.ontariocorn.org/envt/envpest.html

- **Fertilizer consumption**
 - 76.76 kg/tons of PLA
 - 50 kg/h N, 100 kg/h P2O5, 100 kg/h K2O
 - None
ENVIRONMENTAL IMPACT INDICATORS

<table>
<thead>
<tr>
<th>Criteria</th>
<th>PLA based film</th>
<th>SUPERECO film</th>
<th>REMARKS AND REFERENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green house effect in 100 years concerning : Air</td>
<td>Gas emission for green house effect is 40% more</td>
<td></td>
<td>Same source</td>
</tr>
<tr>
<td>Atmospheric acidification concerning : Air</td>
<td>Acid gas emission is 60% more</td>
<td></td>
<td>Same source</td>
</tr>
<tr>
<td>Initiation of photochemical oxidizing agent concerning : Air</td>
<td>60% less gas emission contributing to photo oxidant oxidizing production</td>
<td></td>
<td>Same source</td>
</tr>
<tr>
<td>Eutrophisation of water : concerning : water</td>
<td>Contribution is 11 times more to surface water eutrophisation</td>
<td></td>
<td>Same source</td>
</tr>
</tbody>
</table>

BIODEGRADABILITY

% Waste treatment method (concerning France only)

- In industrial landfill: 50%
- In composting: 8%
- Incineration and energy recovery: 29%
- Sorting and recovery stations: 13%

Norms and test method

- There is no norm concerning biodegradability of plastics, only:
 - ASTM 6400/6868, ASTM D5338 à 58°C et EN 13 432
 - Pass/no pass tests on compostability
 - ASTM 6954 04
 - Standard guide tests that recognize oxo-biodegradability as two step process (degradation then biodegradation)

Compostability (4 Criteria to be satisfied) EN 13432

- Composition: Establish a maximum level of volatil solids, heavy metals and acceptable Fluor in initial material
 - Ok
- Disintegration: this is the ability of product to be fragmented under composting condition, with a refuse limit level of 10% of mass above a screen of 2 mm
 - Ok

For SUPERECO

- Reference Call recovery Europe Ltd
- Composting of Homo-polymer film in a full scale windrow composting plant

- Same
<table>
<thead>
<tr>
<th>Criteria</th>
<th>PLA based film</th>
<th>SUPERECO film</th>
<th>REMARKS AND REFERENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality of final compost and ecotoxicity</td>
<td>Ok</td>
<td>ok</td>
<td>Same</td>
</tr>
<tr>
<td>quality of compost should not be modified by packaging material added to compost and should not be dangerous for environment. Norm ask to make eco-toxicological tests on final compost and require a performance superior to 90% of the one with virgin compost.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conversion of CO2</td>
<td>90% of material should be converted in CO2 in max 180 days</td>
<td>Ok</td>
<td>Non</td>
</tr>
<tr>
<td>Conversion of CO2</td>
<td>90% of material should be converted in CO2 in max 180 days</td>
<td>Ok</td>
<td>Non</td>
</tr>
<tr>
<td>Conversion of CO2</td>
<td>90% of material should be converted in CO2 in max 180 days</td>
<td>Ok</td>
<td>Non</td>
</tr>
<tr>
<td>Biodegradability (in landfill)</td>
<td>Ok</td>
<td>Non</td>
<td></td>
</tr>
<tr>
<td>No norm at the moment: study are made within three important laboratories to establish test method to measure and then to set up a Norm</td>
<td>Ok</td>
<td>Non</td>
<td></td>
</tr>
<tr>
<td>Conditions: Abiotic chemical degradation in landfill and subsequent biodegradation by microorganisms</td>
<td>Ok</td>
<td>Non</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Is the film biodegradable</th>
<th>Yes</th>
<th>Yes</th>
<th>SUPERECO: Stable material whatever humidity level!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Film stability before discarding</td>
<td>Very sensitive to high humidity</td>
<td>12 months</td>
<td></td>
</tr>
<tr>
<td>Film stability after discarding (landfill) base 35µ</td>
<td>4 to 6 months</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degradation</td>
<td>6 month</td>
<td>18 to 24 months</td>
<td>For PLA: Hydro degradation For Supereco: chemical Abiotic degradation</td>
</tr>
<tr>
<td>Biodegradation</td>
<td>Start in the same time as degradation allow to reach small hydrophilic material chains of disintegrated film Final components are: CO2, Water and biomass</td>
<td></td>
<td>SUPERECO: the biodegradation speed is depending from density and nature of micro organisms.</td>
</tr>
</tbody>
</table>
Criteria | PLA based film | SUPERECO film | REMARKS AND REFERENCES
--- | --- | --- | ---
Film properties

| Density | 1.24 | 0.91 | Le SUPERECO has 36% more yield than PLA
Yield (for 30µ in m2/kg):	26.88 m2/kg	36.63 m2/kg
Film behavior during handling	Film gets marks when handled, very crispy and noisy as final packaging	Very flexible and soft film, does not mark and not crispy
Film stability before discarding	Very sensitive to high humidity	Film is designed to be stable from production up to the discard in landfill (see above)
Thickness range	20 to 40µ	Wide thickness range 10µ to 80µ
Mechanical resistance	medium	Excellent
Perforation resistance	weak	Excellent
Printability	Difficult	Excellent, same as BOPP

Range of products available

- Plain film
- Heat sealable film
- Heat sealable film (20 to 50µ)
- Antifog heat sealable film (25 to 35µ)
- Plain film
- Wrap around label film
- Laminating film (12µ)
- CPP film
- Perforated and white film (under development)
- Metallized film (under development)
- Low heat sealing temperature film

Water vapor barrier properties (30µ film at 23°C et 85%HR)

- 55 g/m2.day |
- 1 g/m2.day | Supereco: excellent water vapor barrier properties

Oxygen permeability (30µ at 23°C et 50% HR)

- 500 cc/m2.day |
- 1 500 cc/m2.day

Processability

- Special adjustment are required
- Narrower operating window
- Same as regular BOPP
- No change in process parameters including on converting machines

Haze

- <3 |
- 2

Philippe LAVOISIER

Page 4

12/12/2006

The information contained in this brochure is true and accurate according to current state of our knowledge and intended to give general information on our products and their applications. Since the actual conditions of use are beyond our control, users are advised to make their own tests at their specific conditions of laboratory and/or actual use. We suggest our customers to determine final suitability for their specific end uses. Also be advised that information on this data sheet shall not be construed as an inducement or recommendation to use any process or to manufacture or use any product in conflict with existing, pending or future patents.
The information contained in this brochure is true and accurate according to current state of our knowledge and intended to give general information on our products and their applications. Since the actual conditions of use are beyond our control, users are advised to make their own tests at their specific conditions of laboratory and/or actual use. We suggest our customers to determine final suitability for their specific end uses. Also be advised that information on this data sheet shall not be construed as an inducement or recommendation to use any process or to manufacture or use any product in conflict with existing, pending or future patents.

ECONOMICAL COMPARISON

	Average price per Kg	4.5 €	3.00 €	
------------------------	----------------------	-------	--------	
Average price per 100m2 (base 30µ)	16.74 €	8.19 €	SUPERECO is 50% less expensive than PLA	

Transport cost

SUPERECO, with same thickness has 36% weight advantage versus PLA, therefore for transport of both virgin films to converter and from converter to end user will be at least 30% more; those costs should be also to Eco assessment!